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Abstract--A two-equation model for low Reynolds number turbulence has been developed for dispersed 
dilute two-phase confined flows. The two equations describe the conservation of turbulence kinetic energy 
and dissipation rate of that energy for the carrier fluid. The model is based on the closure for high 
Reynolds number two-phase flows reported previously. 

In order to validiate the proposed model, a turbulent two-phase pipe flow (air laden with spherical 
uniform-size particles) is predicted. The predictions of the mean flow properties of the two phases and 
the turbulence characteristics of the carrier phase show good agreement with the available experimental 
data. 
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1. I N T R O D U C T I O N  

Modeling of  confined turbulent two-phase flows is needed because a wall is ever present in most 
practical applications. Most of  the earlier studies (e.g. Saffman 1962; Owen 1969; Choi & C h u n g  
1983) investigated one-dimensional flows for the limiting cases of  large and small relaxation times 
of  the particles compared to the lifetime of the energetic eddies and vanishing relative velocity 
between the two phases. Drew (1975) studied the problem of turbulent sediment transport over 
the bottom of  a stirring tank. His modeling approach is based on the mixing length hypothesis. 
The mixing length hypothesis is also used by Kramer & Depew (1972) and Choi & C h u n g  (1983) 
in modeling the fully developed two-phase turbulent pipe flows. However, the mixing length model 
is not suitable when processes of  convective and diffusive turbulent transport are important. 
Moreover, the model is of little use in complex flows because of the great difficulties in specifying 
the mixing length (Rodi 1980), even for single-phase flows. 

Pourahmadi & Humphrey (1983) developed a two-equation turbulence model (k-~) for 
two-phase confined flows. They modeled the turbulent correlations up to second order. They used 
the wall function approach to bridge the near-wall region in which their model cannot be applied. 
This is due to the fact that their model is valid only for high values of the turbulence Reynolds 
number. They used the universal law of the wall of single-phase flows to predict the turbulent 
two-phase pipe flow of  Zisselmar & Molerus (1979). However, the dispersed-phase volume fractions 
encountered in the experiment of  Zisselmar & Molerus (1979) are >0.01, which correspond to 
dense flow conditions. Under these conditions the use of  the single-phase universal law-of-the-wall 
is highly questionable (see section 5.4). Even for single-phase flows, the validity of  this approach 
is restricted to situations in which the wall functions are well tested. 

The first objective of this study is to develop a second-order closure model for turbulent 
two-phase flows with low Reynolds number, thus providing a more reliable method for calculating 
wall-bounded flows than that offered by the use of  either "wall-law" matching or the mixing length 
hypothesis. The second objective is to validate the model by comparing its predictions for a 
turbulent gas-solid suspension flow in a vertical pipe with the experimental data of Tsuji et  al. 

(1984) and Maeda et  al. (1980). 

2. G O V E R N I N G  EQ U A TIO N S  

The governing equations for incompressible turbulent two-phase flows have been derived by 
Elghobashi & Abou-Arab (1983) by Reynolds decomposition and time-averaging of the instan- 
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taneous equations. Closure of the time-mean equations was achieved by modeling the turbulent 
correlations up to third order. Here we extend these equations to account for the wall effects which 
can be summarized as follows: 

I. The total effective viscosity for fluid momentum transport is taken as the sum of 
the laminar and turbulent values, thus taking into account the molecular viscosity 
which has a dominant role in momentum transport in the wall region. 

2. Saffman's lift force and the augmented particle drag due to the wall presence (Rizk 
& Elghobashi 1985) are included in the momentum equations of the dispersed 
phase. 

The final set of equations is tisted below: 
the mean momentum equation of the carrier fluid in the x-direction, 

1 
p,~,(U~U~.x+ U,.U~..,.) = - ~ , P . , - ~ 2 F C , ( U ~ -  V~)+ y--)[~,y'~(lA, +#,)Ux.y].y; [11 

the mean momentum equation of the carrier fluid in the y-direction, 

P~ ~t (U,- U~..,- + U,. u,..y) = - q)~ P..,.- F4}2c2(uv- V v )  - 2 p l  ~j ( yJk~ )  ~.; [2] 

the mean momentum equation of the dispersed phase in the x-direction, 

1 
P2 (i[)2 (Vv Vx.x + Vy Vx, y ) = - 4~2 P.x + q~2FC, (U~ - V~) + ~ [Y J~2(lA2 + lap) Vx v] y + g,q~2(P2 -- 0, ); 

[31 

the mean momentum equation of the dispersed phase in the y-direction, 

p2g'2(V~ V,..x + E,.Vy..~.)= -~2P.y + FC:q~2(U,.- Vy) 

l [ (n', n, + q -0:?  y'k :jo )e(o,)do,],:, 
(1 ; 

cAhla, U,,,. (Us- Vx) 
+ d + g:' q~2 (Pz - P, ), [4] 

where Ce = 3.08 (Saffman 1968); 

the mean continuity equation of the carrier fluid, 

U 1 [ ( v t ) l (  'v t  ) 1  --  YJ - -  ~ l , y  = 0;  [5] (~' x)"~+ Y ( y j ~ ' w ) ' -  ~ " ~  .x -7 ~,, ., 

the mean continuity equation of the solid phase, 

1 [ ( v t  ~ . x ' ] - , - ~ ( Y J - - ' 2 . y )  1 = 0 ;  [6] 
. . . .  • 1 vt 

(cb, V~)~+~(yJ~zV, . )~ . -  ~ /.x Y a,: .y 

and 

the mean global continuity equation, 

~t  + ~2  = 1; 

where j = 0 for plane flows, j = 1 for axisymmetric flows, 

°;-- + 3  

[7] 

[8] 

[9] 
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+ ---if- ~k~- ) + 3 ( -~)  + C2x//-6 (-~ +C~, 

C2 

//0.) "~ 3,2 (1 +/~) (co y/2"~, 
U 

[lO] 

[11] 

~')3 = 7 2 0 2 ~ ' ~ R ,  [12] 

(, /~ , [131 

12v, 
0~ = d 2 ,  [14] 

3p, 
/~ - (2p2 + p,), [15] 

d 
0 = - ,  [161 

r/ 

t/ is the Kolmogoroff length scale, 

r /=  [17] 

and 

? = K/3zt. [181 

In the above equations, x is the coordinate parallel to the wall and y is the coordinate normal 
to it; Ui and Vi are the mean velocities of the fluid and particles, respectively, in the/-direction; 
d is the particle diameter; F is the momentum exchange coefficient; p is the density; • is the volume 
fraction; and the subscripts 1 and 2 denote the fluid and particles, respectively; g is the gravitational 
acceleration. 

Ct and 6"2 are correction factors which account for the effect of the wall on the Stokesian drag. 
Near the wall the fluid decelerates in order to satisfy the no-slip condition at the wall while the 
particles slip by. Accordingly, the relative velocity between the particles and the fluid increases, thus 
augmenting the drag force of the particles. Here we follow Rizk & Elghobashi (1985) in evaluating 
C, and 6"2. We adopt Faxen's (1923) expression for C, and Brenner's (1961) and Maude's (1961) 
expressions for (?2. These expressions read as follows: 

Ci = E l  _ 9 ( ~ y ) +  1 ( d  ']3 _ 45 ( d  x~ 4 - -  l ( L ~ 5 ]  -I [19] \Ty: 2- \Tyj ,o \2y) _1 
and 

For example, setting (d/y) = 0.5 in [19] and [20] results in increasing the drag forces in the directions 
parallel and normal to the wall by 20 and 30% respectively, above their values in unbounded flow. 

The term containing (7: on the r.h.s, of [4] is the volume-averaged counterpart of Saffman's lift 
force, F/, acting on the dispersed phase in any control volume, given by 

F:= Kp, d2( 1 U~.y)'/2(Ux- Ix), [21] 

M.F. 15 I - - H  
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where K is a constant obtained via numerical integration whose value was corrected from 20.3 to 
1.615 by Saffman (1968). This term shows that if the dispersed phase leads the fluid in the 
x-direction, the lift force will be negative and tend to drive the particles toward the wall. Although 
Saffman's lift force has been derived for a sphere suspended in a free uniform shear flow, it is used 
in this study for the following reasons: (i) in the vicinity of the wall, the particle is subjected to 
a uniform shear due to the linearity of the fluid velocity distribution there; and (ii) the direction 
of the lift force observed experimentally for both neutrally buoyant and nonneutrally buoyant 
spheres suspended in wall-bounded flows has been correctly predicted by Saffman's expression (see 
Brenner 1961; Theodore 1964). 

It should be noted that we have seven unknowns (Ux, Uy, I(~, Vy, P, q~,, and q~2) and seven 
equations, [1]-[7]. So, the equation set can be solved numerically once the auxiliary quantities 
(v,, vp, v2, a~2 and F) are available together with appropriate boundary conditions. The calculation 
of these quantities will be discussed in section 4. 

3. THE LOW REYNOLDS NUMBER TURBULENCE MODEL 

The high Reynolds number turbulence model developed by Elghobashi & Abou-Arab (1983) for 
free shear flows is modified as follows to account for wall effects. Thus, the viscous diffusion of 
k and E is included. The sources and sinks of the ~ equation and likewise the eddy viscosity of the 
carrier fluid are made functions of the local Reynolds number of turbulence (Jones & Launder 
1972). Terms in the exact equations of k and E which account for anisotropic dissipation (Jones 
& Launder 1972) are included. The correlations which represent the interaction between the 
particles and fluid turbulence are remodeled to account for the presence of the wall. 

The final form of the turbulence model equations used in this study (Rizk 1985) are given below: 

turbulence kinetic energy, k 

Y'I [ (vt+v,) ] p ,~ (U~k~+Uvkv )=p j~ j -~ ,  yJ k y q-(p, c19, vtUxyUxv)-pl~lE 
. , .  , O .  k , y  " , .  

convection diffusion G 

and 

Ee Ew 

[22] 

turbulence energy dissipation rate, E 

p,~,(U~Ex+UvE.,.)=p,~tl[-yj(Vt+V')E.y - ] ~ 3 L j  +cq - 7 - - I - 3 - E  ,2 , E " " a, Otc--P'~'c '2A K--C'3KEe--K fwEw" [231 
,Y 

It should be noted that [22] and [23] do not contain the terms representing third-order correlations. 
The same applies to the mean momentum equations [1]-[4]. This was based on careful examination 
of the magnitudes of these terms in the flow considered here, which showed that these terms can 
be neglected. 

The quantities/a,, ~, and 1)4 are given by 

#t = c~f~ - - ,  p' k2 [24] 
E 

and 

ft, = + + 3 + C, ~ + C~ 

f24 = 70ftR[2C , + w/-6~-~ \ '/2 qJ. 

[25] 

[26] 
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The Lagrangian frequency function of the carrier fluid, E(co), is, in general, affected by the presence 
of the dispersed phase. In the low frequency range (inertial subrange), the modulation of E(~o) by 
the dispersed phase can be neglected (AI Taweel & Landau 1977). Thus, in the present work the 
Lagrangian frequency function is given by (Hinze 1975) 

2 )  TL [27] 
E(~o)= ~ (1+o~2T~.), 

where 09 ranges from 1 to 104 (s t) and TL, the local Lagrangian integral time scale, is calculated 
from (Hinze 1975) 

k 
TL = 0.2- .  [28] 

E 

The influence of Reynolds number mentioned above is introduced via the three functions f2, fw 
and f~ which are assigned the following forms (Jones & Launder 1972; Chien 1980) and appear 
in [23] and [24]: 

[ - - (  Yt ~2], [29] 
f2 = 1 - 0.22 exp \ 6 v , / J  

fw = exp( -  0.5 Y+) [30] 

and 
f~ = 1 -- exp(--0.0115Y+), [31] 

where Y+ = (U~y)/v~ and U~ is the friction velocity. 
Ew is needed to balance the molecular diffusion of k which is finite at y = 0. Chien (1980) used 

a Taylor series expansion for the fluctuating velocity components in the limit at y = 0, 

k 
~w = -- .  [32] 2Vly2 

4. CALCULATION OF THE AUXILIARY QUANTITIES 

In this section we calculate the dispersed-phase transport parameters, ~2, Vp, v2 and the 
momentum exchange coefficients F. 

4.1. Turbulent Schmidt number of the dispersed phase, ao2 

The turbulent diffusivity of solid particles Dp, is evaluated by introducing the dispersed-phase 
Schmidt number a~2, defined as 

Yt a~2 = ~pp. [33] 

Gouesbet et al. (1983) developed the following semi-empirical equation for a,2diffusivity along 
the lines of Csanady (1963): 

( v, _ U i ) 2  ]1/2 
a~2 = L1 + 3 C~ ~: . [34] 

The empirical constant C a is determined through optimization to obtain good agreement with the 
particle dispersion data of Snyder & Lumley (1971) and Wells (1982). The value of C~ is found 
to be 0.85. Equation [34] is used in this study for the particle Schmidt number, ~02" 

4.2. Turbulent kinematic viscosity of the dispersed phase, Vp 

Experimental evidence (cf. Modarress et al. 1982, 1983) suggests that the kinematic eddy viscosity 
of the dispersed phase, vp, is different from the eddy diffusivity of the particles, Dp. In this study, 
v o is calculated by introducing another Schmidt number, trp, 

Vp 
~p = - - .  [35] 

Dp 
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The value of trp is about 1.5. This value was determined (Rizk 1985) by computer optimization 
to achieve good agreement between the predicted and measured mean velocity profiles of the 
dispersed phase in a round gaseous jet laden with spherical uniform-size solid particles and the 
corresponding experimental data of Modarress et al. (1982, 1983). 

4.3. Laminar kinematic viscosity o f  the dispersed phase, v2 

On the molecular level, collision between the particles and fluid molecules is the main 
mechanisms of exchanging momentum between the particles and the fluid. This interaction between 
the particles and the fluid enhances the momentum transfer between the adjacent layers of the fluid. 
We evaluate v2 by assuming that v~/v t = v2/Y  p (Choi & Chung 1983): 

Y2 YI 
- [ 3 6 ]  

Yp Yt 

Yl Pt Yt 

v 2 Vp tTp Dp 

and 

With the aid of [33] we can write 

Vi Vt O'~2 

Y2 Yp O'p 

4.4. The momentum exchange coefficient, F 

The momentum exchange coefficient is given by 

[37] 

[381 

F = Q(18/a~-~2), [39] 

where Q is a correction factor for the Stokes' drag law which depends on the particle Reynolds 
number and can be obtained from the standard drag curve of steady flow around a sphere (Clift 
et al. 1978). 

5. MODEL VALIDATION 

5.1. The f low considered 

The flow selected to validate our model is the turbulent two-phase pipe flow (see figure 1) for 
which some experimental data are available. We compare our predictions with the experimental 
data of Tsuji et al. (1984) and Maeda et al. (1980). Table 1 lists the experimental conditions for 
the test cases used in the comparison. In both experiments, a laser-Doppler velocimeter (LDV) was 
used to measure the velocities of air and solid particles in a vertical pipe two-phase flow. 

It should be mentioned that neither Tsuji et al. (1984) nor Maeda et al. (1980) made 
measurements in the wall region (Y+ < 50). 

. . . .  to, °'T ° ° '  

o7 

Vx Partlc. les 

i Ux. l 
• " " ..Yx.:.. Q 

Figure I. Flow schematic. 
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Table 1. The experimental test cases used for model validation 

P~ Two-phase 
Investigaor Re d (/zm) p~ ~0 system 
Tsuji et al. (1984) 2.3 × 104 200 866 0.5 Polystyrene 

(case I) 0.9 particles/air 
3.3 x 104 1.3 
(case 2) 1 

2.1 

Maeda et al. (1980) 2 x 104 45 2200 0.3 Glass 
(case 3) 136 0.3 particles/air 

0.54 

125 

Zisselmar & Molerus (1979) studied the modulation of  fluid turbulence due to the presence of 
solid particles in a dispersed solid-liquid turbulent pipe flow. They reported measurements of the 
turbulence intensities up to a wall distance of Y + =  13.4. However, the dispersed-phase volume 
fractions in their experiment were >0.01, which far exceeds the dilute regime limit of  0.004, thus 
indicating dense two-phase flow conditions. For  such densely-laden flows the momentum exchange 
mechanisms are not limited to gas-particle interactions but also to particle-particle interactions. 
Therefore, their data are not used in the validation of  our model. In the absence of  experimental 
data in the wall region for dilute two-phase flows and in order to show the effects of the solid 
particles on the law of the wall, we consider a hypothetical two-phase flow in which the dispersed 
phase consists of  spherical particles of uniform size (d = 45/zm). 

The inlet conditions of  the carrier fluid (air) flow are identical to those of the single-phase pipe 
flow of  Laufer (1954). Therefore any deviations in the fluid velocity field from that measured by 
Laufer in the wall region will be due to presence of the particles in air flow. 

In order to study the effect of  the particle material density on the flow we examined two cases. 
In the first, the ratio of the particle density to that of  the fluid, P2/P~ = 100; and in the second case, 
P2/Pl = 2000. 

5.2. Boundary conditions 

The parabolic flow considered here requires the prescription of  three boundary conditions for 
each dependent variable. 

The inlet profiles of the mean velocity and concentration of  the dispersed phase were assumed 
uniform. We insured that these inlet profiles satisfy the specified mass loading ratio of the 
experiment. The inlet k profile was assumed similar to that measured by Laufer (1954). The starting 
condition for the rate of dissipation ¢ was generated from the following formula (Launder & 
Spalding 1972): 

klS 
( ' ~ 0 . 7 5  - -  [40] 

E = _ ,  I ' 

where ! is the integral turbulence length scale which equals 0.1R, where R is the pipe radius. In 
general the inlet conditions exerted a minor influence on the results far downstream in the fully 
developed region. 

At the axis of  symmetry (r = 0) all the radial gradients are set to zero, in addition to the vanishing 
radial velocity for each phase. 

At the solid walls, y = 0, the boundary conditions are 

u = k  = E = 0  [41] 

and 

d~ 2 
c3r = 0. [42] 

In the case of fluid-particle flows, the particles may be in slip motion at the wall while the fluid 
satisfies the no-slip condition. Consequently, the particles and carrier phase do not satisfy the same 
wall boundary conditions. When there is no net deposition (a situation which can be achieved when 



126 M . A .  RIZK and S. E. E L G H O B A S H I  

the pipe is vertical and there are no electrostatic forces) of  the particles, the normal velocity 
component at the wall vanishes, even when field forces are present. Accordingly, in this study, the 
normal velocity component of  the dispersed phase will be assigned a zero value at the wall. The 
boundary condition for the tangential velocity of the dispersed phase at the wall for a fully 
developed pipe flow is obtained from the mean momentum equations of the carrier fluid and the 
dispersed phase in the x-direction by neglecting the terms containing volume-fraction fluctuations. 
The result is 

1 R 
I(~.~ I, = -~2w{~- [P .... -q~2w(p2-pl)g]-CPlwlhU~.~lw} . [43] 

5.3. Numerical solution procedure 

The numerical method used in this work is a modified version of the marching integration 
procedure of Spalding (1979). The modifications include the treatment of the turbulent correlations 
existing in the continuity and momentum equations of the two phases. Forty-four cross-stream grid 
nodes were used to obtain grid-independent solutions and, for an accurate representation of the 
large gradients in the vicinity of the wall, roughly one-fourth of  those were located with Y + < 50. 
For the case of Laufer's single-phase flow (Re = 5 x l04)  only, 52 cross-stream grid nodes were 
used. The first grid point was normally located at Y÷ = 1 and it was insured that this value did 
not exceed Y+ = 2 in the course of the computation. 

The streamwise step size was taken as five sublayer thicknesses. 
More details about the numerical solution are given in Rizk (1985). 

5.4. Results and discussion 

The values of the new constants in the turbulance model, namely 0-,, and c,3 were determined 
previously by Elghobashi et al. (1984) for jet flows and have been reoptimized here for turbulent 
two-phase pipe flows. The values of the coefficients appearing in [22]-[24] are listed in table 2. 

As shown in table 2, the value of 0-~, was kept the same as proposed by Elghobashi et al. (1984). 
The value of 0",3 (----2.0) was determined through a parametric study to achieve the best possible 
agreement with the experimental data. This value is greater than that (1.3) reported by Elghobashi 
et al. (1984) for jet flows. The dependence of the value of % on the type of flow, i.e. jet or pipe, 
suggests that c,3 may be a function of local flow conditions rather than a constant. A sensitivity 
analysis was carried out to address the impact of  the variations of a~ and % on the results. A 15% 
change in % resulted in a maximum change of about 3% in the mean velocity profiles and about 
7% in the turbulence quantities. A 20% change in the value of a,. resulted in a maximum change 
of 2% in the results. 

The results consist of two main parts. The first contains a comparison of the model predictions 
with the experimental data of Tsuji et al. (1984) and Maeda et al. (1980). The second presents the 
model predictions in the wall region for the hypothetical two-phase flow described above. 

Figure 2 compares the calculated and measured values of fully developed mean longitudinal 
velocities for the fluid and dispersed phase for case 1 mean longitudinal velocities for the fluid and 
dispersed phase for case 1 (d = 200/~m, P2/Pl ---- 866, Re = 2.3 × 104) and @0 = 1.3. The velocity of 
the particles is smaller than the air velocity over 90% of the cross section; it becomes larger than 
the air velocity near the wall because the air flow is subject to the no-slip condition at the wall 
while the dispersed phase slips by. Therefore, in a vertical pipe flow, there must be a location where 
the sign of relative velocity between both phases changes. The figure shows reasonable agreement 
between the predictions and experimental data. 

The effect of the mass loading ratio ¢'0 on the air streamwise mean velocity profiles is shown 
in figures 3 and 4 for case 1 (d = 200/~m, P2/Pl = 866, Re = 2.3 x 104) and case 3 (d = 136#m, 

Table 2. Coefficients of the turbulence model 

(7 k O'~ C~ C~ i Ct2 0"01 Ct 3 

1.0 1.3 0.09 1.35 1.8 1.0 2.0 
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Figure 2. N o r m a l i z e d  m e a n  veloci ty prof i les  for case 1 
and '/~0 = 1.3. 
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Figure 3. Effect o f  the mass loading rat io on the c a r r i e r  
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P2/Pl = 2200, Re = 2 x 1 0 4 ) .  These figures indicate that the addition of the solid particles flattens 
the air velocity profile in the core of the pipe but steepens it in the region near the wall; this effect 
is augmented with increasing the mass loading ratio ¢0. Since the velocity of the dispersed phase 
is higher than that of  the air in the wall region due to their different boundary conditions at the 
wall, the dispersed phase acts as a source of momentum for the air which will be accelerated there. 
The air then decelerates in the core region to satisfy its conservation of  mass and also due to the 
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Figure 4. Effect of  the mass loading ratio on the carrier Figure 5. N o r m a l i z e d  m e a n  veloci ty profi les  for case 2. 
phase normalized mean velocity prof i les  for case 3 and 

d = 136/am.  
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particles drag, with the net result of flattening the air velocity profile in the core region and 
steepening it in the wall region. Increasing the mass loading ratio enhanced the effectiveness of 
momentum transfer from the dispersed phase to the air in the wall region and thus increases the 
flatness of the air velocity profile in the core region. The agreement between the predictions and 
the experimental data is good (maximum error - 6%). 

The effect of the mass loading ratio on the location at which the slip velocity vanishes is 
demonstrated in figure 5, which shows that this location moves away from the wall with decreasing 
the loading ratio. This may be explained as follows: increasing the mass loading ratio increases the 
flatness of the air velocity profile, whereas the dispersed-phase mean velocity profile is not affected 
significantly; thus, the location of vanishing relative velocity approaches the wall by increasing the 
mass loading ratio. 

The measured and predicted mean velocity profiles for case 3 ( d = 4 5 ,  136/~m, ~0=0.3,  
Re = 2 x 104) are shown in figure 6. This figure shows that the effect of small-size particles on the 
flatness of the air velocity profile is more marked than that of larger particles for the same loading 
ratio. This is attributed to the interphase surface area acted on by viscous drag. This surface area 
for 45 pm particles is about three times that for 136 #m particles. Furthermore, the smaller the 
particle size, the less is the value of the relative velocity. As a result, the change in sign of the relative 
velocity occurs at larger distance from the wall for small particles than for larger particles. The 
agreement between the measured and predicted mean fluid velocities is very good. The maximum 
discrepancy in the mean solid-phase velocities is about 8%, which is well within the bounds of 
experimental error (indicated in the figure by the two crosses). 

The influence of the mass loading ratio 4) 0 on the fluid turbulent intensity and the turbulent 
shear stress is shown in figures 7 and 8, respectively. Both the measurements and predictions 
show that increasing ~0 reduces the intensity ~x/Ux., which can be lower than the single-phase 
value by as much as 38% for ~0 = 1.3 at the pipe centerline. The predicted reduction of 
x//-~/Ux.c is attributed mainly to the effect of the new dissipation term, Ee, in [22]. This conclusion 
is based on the result of computations performed using the complete set of governing equations 
[1]-[7] for the two phases together with the k and E equations of single-phase flow (i.e. [22] and 
[23] without the E= terms) for ~0 = 1.3. The predicted ~-~/U,., from these equations is plotted in 
figure 7. It is seen that the reduction in the centerline turbulence intensity, as compared to that 
of the single-phase value, is only half that measured and predicted by the two-phase k-E model. 
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Figure 6, Normalized mean velocity profiles for case 3 and ~0 = 0.3. 
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Figure 8. Turbulence shear stress profiles for case I and 
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Increasing ~0 results in increasing the number of particles and hence their contribution to the 
sink of k. Figure 8 shows that the fluid turbulent shear stress decreases with increasing ~0. At the 
wall the viscous shear stress is much greater than the turbulent stress. Figures 3 and 4 indicate that 
the mean velocity gradient at the wall, and hence the wall shear stress, increase by increasing ~0. 
This fact is manifested in figure 9 which displays the percentage change of the wall shear stress 
T, from the single-phase value vs the mass loading ratio ~0 for case 1. It is seen that the wall shear 
stress increases due to the addition of the particles and consequently the pressure drop in the pipe 
increases. From a design point of view, this is an important result because it indicates that for the 
same mean-flow Reynolds number, a more powerful pump is needed for pumping gas-solid flow 
than that required for pumping gas alone. 

Figures 10-15 show the predicted profiles of the fluid turbulence kinetic energy, turbulent shear 
stress and streamwise mean velocity in the wall region of the hypothetical two-phase flow described 
at the end of section 5.1 above. The single-phase data of Laufer (1954) are also plotted in these 
figures to show the deviations, due to the presence of particles in our flow, of our turbulence 
properties from those of Laufer's. 
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Figure 9. Var ia t ion o f  the wal l  shear stress wi th  the mass loading rat io for case I. 
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The diameter of  the particles is 45 #m in the two cases studied. In case l, p:/p~ = 100 which 
corresponds to snow particles in air. In case 2, P2/P~ = 2000 which corresponds to sand particles 
in air. Figure l0 shows the profiles of  x/~/U~ in the wall region (0 < Y+ ~< 80) for different 
volumetric loading ratios ~0v. The reduction of ,v/k/U~ and u,~/U~ with increasing volumetric 
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loading ratio, ~0v, can be explained in the same manner as for figures 7 and 8. Figures 12 and 15 
show the effect of increasing ~0v on the law-of-the-wall. Increasing ~0v results in reducing 
U + (= Ux/U~). Increasing ~ov increases the magnitude of the axial pressure gradient dP/dx, and 
consequently Us, which results in lowering U +. 

Comparison of figures 10-12 with those in figures 13-15 indicates that, for the same volumetric 
loading ratio, the higher density ratio (P2/P,) has a more pronounced effect on the turbulence 
characteristics than the smaller density ratio. When the law-of-the-wall is used in the computation, 
the first grid point near the wall is located at about Y÷ = 30. Figure 15 shows that the deviations 
of the velocity profile from that of the single phase at Y+ = 30 for ~0~ = 0.0005, 0.001 and 0.004 
are about 4, 12 and 16%, respectively. The deviations from the single-phase values for k and uxur 
are much larger than those encountered in the velocity profiles. Based on these results, the law-of- 
the-wall should not be used for volumetric loading ratios >0.0005. The error in specifying the 
velocity boundary condition based on the single-phase law-of-the-wall increases with increasing ~0~. 

6. C O N C L U D I N G  REMARKS 

The paper presented a low Reynolds number turbulence model for confined two-phase flows in 
which the local value of the turbulent viscosity is determined from the solution of transport 
equations for the turbulence kinetic energy and its dissipation rate. The proposed model accounts 
for the interaction between the two phases and the wall and its influence on turbulence structure. 
Comparison of the predictions with experimental data indicates that the new turbulence model 
predicts the significant effects of the solid particles on the pipe flow. It has been found that, in this 
flow, third-order correlations and the second-order correlations including volume-fraction 
fluctuations, except those in the continuity equations, have negligible effects on the flow. This study 
shows that the addition of solid particles to a turbulent vertical pipe flow affects the flow in the 
following manner: 

1. The air leads the particles in the core region and lags behind the particles near 
the wall. This behavior is due to the fact that the fluid does not slip at the wall 
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where particles do. Consequently, the air mean velocity profile is flatter in the core 
of the pipe and steeper near the wall; this effect is augmented by increasing the 
mass loading ratio or decreasing the particle size. 

2. The mean relative velocity between the gas and particles is mainly a function of 
the size and material density of the particles, and the location of vanishing relative 
velocity moves away from the wall by decreasing the mass loading ratio. 

3. Significant reduction of the fluid turbulent shear stress occurs due to the 
dissipating effects of the particles. This is accompanied by a decrease in the 
turbulent kinetic energy of the fluid. 

4. For the same mean-flow Reynolds number, a more powerful pump is needed for 
pumping a gas-solid suspension in a vertical pipe than is required for pumping 
gas alone. 

5. The predicted modification of the law-of-the-wall by the particles suggests that the 
use of the single-phase law-of-the-wall for two-phase flows is an inaccurate 
representation of the real situation for volumetric loading ratios >0.0005. 
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